
Modelling Load-Changing Attacks in Cyber-Physical Systems

Luca Arnaboldi1,2, Ricardo M. Czekster3, Charles Morisset5

School of Computing, Newcastle University
Newcastle upon Tyne

United Kingdom

Roberto Metere4

Newcastle University & The Alan Turing Institute
Newcastle upon Tyne, London

United Kingdom

Abstract

Cyber-Physical Systems (CPS) are present in many settings addressing a myriad of purposes. Examples are Internet-of-Things
(IoT) or sensing software embedded in appliances or even specialised meters that measure and respond to electricity demands
in smart grids. Due to their pervasive nature, they are usually chosen as recipients for larger scope cyber-security attacks.
Those promote system-wide disruptions and are directed towards one key aspect such as confidentiality, integrity, availability
or a combination of those characteristics. Our paper focuses on a particular and distressing attack where coordinated malware
infected IoT units are maliciously employed to synchronously turn on or off high-wattage appliances, affecting the grid’s primary
control management. Our model could be extended to larger (smart) grids, Active Buildings as well as similar infrastructures.
Our approach models Coordinated Load-Changing Attacks (CLCA) also referred as GridLock or BlackIoT, against a theoretical
power grid, containing various types of power plants. It employs Continuous-Time Markov Chains where elements such as Power
Plants and Botnets are modelled under normal or attack situations to evaluate the effect of CLCA in power reliant infrastructures.
We showcase our modelling approach in the scenario of a power supplier (e.g. power plant) being targeted by a botnet. We
demonstrate how our modelling approach can quantify the impact of a botnet attack and be abstracted for any CPS system
involving power load management in a smart grid. Our results show that by prioritising the type of power-plants, the impact of
the attack may change: in particular, we find the most impacting attack times and show how different strategies impact their
success. We also find the best power generator to use depending on the current demand and strength of attack.

Keywords: Coordinated Load-Changing Attacks, Smart Grid, Load Balancing Systems, Continuous Time Markov Chains.

1 Introduction

Cyber security is a major concern when evaluating critical resource infrastructures. Malicious attacks and
unintended damages significantly increase each year, and it is therefore important to know what effects they
will have. Due to strict supply-demand requirements in power grids, to maintain equilibrium is of paramount
importance. In practice, the entities that regulate and those that actually maintain equilibrium depend on the
politics of the country, and we do not refer to them specifically, rather we refer to a Cyber-Physical System
(CPS) component called Load Controller. Whenever it is required to increase or decrease energy levels, it may
trigger costly responses, e.g. turning on new energy sources or disconnecting areas from the grid. Historically,
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power generation and demand have been very separated; however, this scenario is changing, and consequently
their related security risks and possible attacks are changing too, so the current mitigation strategies may not
be applicable any more. The current role of a load controller is balancing energy supply accordingly to demand
while maintaining the frequency of the current at around 50 MHz in Europe (or 60 MHz for other countries
such as USA, Brazil and Japan).

Organised attacks aimed at power infrastructures are called Coordinated Load-Changing Attacks (CLCA),
where synchronous connections or disconnections of high-wattage units such as water heaters or air conditioning
units are used to cause disruptions in energy provision. CLCA are here considered as black boxes, i.e. they do
not require extensive knowledge as to the particularities of grid operations in order to be employed. If sudden
spikes or drops such as synchronised turning on or off of several devices takes place, they cause the equipment to
short and break, causing damages and reducing the availability of power supply. The load controller can easily
cope with common occurrences in terms of imbalances, adjusting energy flows accordingly; however, sudden
usage spikes may unadvisedly cause the grid to collapse. Malicious users could profit from those situations
as they could infect a considerable number of high-wattage devices to coordinate actions that impairs energy
distribution [10,11].

In the context of this paper, we are interested in two types of systems: on the one hand, we consider
CPS [17,27], i.e. systems with limited resources (low power, energy, processing or other capacity related issue)
employed in a variety of equipment ranging from sensors to smart grid components. On the other hand, we are
taking into consideration large scale infrastructures such as the Smart Grid, Active Buildings, different types
of power plant (that can be solar or nuclear, for example) and other power reliant schemes. We are specifically
focusing on modelling their interaction, i.e. how power supply mechanisms react due to CPS usage, as well
as the influence one has on the another. Through this model we can observe the daily usage of energy in the
smart grid, and calculate its ability to cope with duress. Our modelled attacker (or adversary) attempts to
exploit the CPS mechanisms to decrease availability and cause damages; our model captures the probability
of success and the tolerance of a theoretical smart grid made of various different types of power plants.

In this application context, it is worth defining a CPS and its roles. It consists of components with two
parts, i.e. a computing part integrated with a physical counterpart, both connecting and communicating with
other CPS to achieve common objectives. For example, a CPS could be an embedded system attached to a
heartbeat sensor component to collect meaningful health data from patients inside a care unit, or could be smart
meters exchanging data on power system energy transmission and distribution. These infrastructures usually
encompass a sizeable number of entities in hyper-connected environments, deployed to help users improve
productivity, bottleneck assessments and much more. The presence of general purpose CPS in residential,
commercial and industrial settings is ubiquitous as many vendors offer solutions that vary from smart home
sensing devices to closed circuit televisions.

The simplistic nature of CPS implementations makes them prone to software contamination: for instance,
installing malware in high-wattage devices, e.g. air conditioning units or water heaters. Due to this, they are
natural recipients for coordinated attacks aimed to disrupt grid infrastructures as a synchronised event may
cause over demand or influence voltage and frequency to inadmissible levels. This is particularly unsettling
for many reasons as it may impact overall energy costs for customers or, in extreme cases, lead to preventable
casualties in healthcare settings. The aim of this work is to evaluate different power plant configurations in
terms of operational characteristics such as cooling down and maintenance time as well as type (e.g. nuclear
power or solar panels), aiding managers to make better decisions when designing power systems, and potentially
mitigating the impact of these attacks by choosing better load controller configurations. Our model will also
show the trade-offs of mixing different power plant types to withstand CLCA attacks, reducing the hazardous
effects they have on the infrastructure.

The paper is organised as follows: Section 2 will address cyber security concerns and related work. On
Section 3 we will discuss our modelling, with our problem formalisation and a simple model. We explain our
cyber security model applied to CPS on Section 4. Section 5 will describe our results and findings and in
Section 6 we will discuss final considerations, model extensions and future work.

2 Security concerns and related work

A CPS often entails limited resource machinery, equipped with wireless or wired communication capabilities.
They serve distinct purposes and could be deployed in different settings to address a multitude of objectives.
In this work we are interested only in availability of CPS and the consequences it imposes to overall users
(or customers) when used as recipient for active attacks. In performance evaluation research, availability is
a crucial measure used to infer quality levels of systems as well as capacity planning. Attacks directed at
availability aim to exhaust resource capabilities until depletion causing delays while processing messages. CPS
often operate unsupervised in a state known as Machine to Machine interaction (M2M). Scenarios involving
direct M2M, without human supervision, can have several security implications; it becomes a lot easier for
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an attacker to gain undetected access to devices, attacks on these systems take longer to be detected and the
possibility of a device misbehaving (due to attacker control or other) becomes much more common.

The vast popularity of these kinds of systems has triggered unprecedented (and inexpensive) access to
Botnets. Simply put, a Botnet is a network of infected devices that can be remotely and synchronously
controlled by an attacker. With the raise of popularity of the IoT, it has become almost trivial to gain access
to large amount of devices. This is an outcome of lack of security measures applied to IoT devices, as well as
the ease of access to tools such BlackEnergy 6 . This tool in particular was able to create a Botnet that took
down large amounts of the Ukraine power grid in 2015 7 . Denial-of-service (DoS) is a common choice of attack
after gaining access to a botnet. These attacks are directed towards availability and aim to interrupt service
to critical systems. Traditionally, DoS attempts are network-based and are used to saturate communication
channels with spurious traffic to overwhelm active nodes until they stop servicing or begin acting abnormally.
These kinds of attacks flood targets with fake requests that may cause extreme delays, reducing service levels
on recipients. One key aspect of such service disruptions is to differentiate active and aggressive attacks from
actual requests (even for an elevated number of messages), responding equitably to incoming messages.

DoS can be caused by various techniques, such as Ping Flood, Smurf Attack, SYN Attack, Buffer Overflow,
and other attack techniques. However, more recently, attackers began exploiting other system specific aspects,
the kinds of attacks do not merely attempt to flood a system but rather exploit a specific vulnerability to cause
damage which is harder to trace. An example of exploiting a specific vulnerability was the attack against the
Ukrainian power load controller that caused a nationwide blackout. However, it was not an isolated incident:
as recently as this year, a similar cyber attack was suspected to have been launched against the Russian
power grid 8 . The common goal of these attacks is to create an imbalance in the frequency appreciated by
power generators’ security mechanisms due to a sudden surge. Those sort of attacks have been called load
changing Distributed DoS or Grid-Shock [10], and they can cause damage to machinery, power cut-outs and
(consequently) huge monetary loss (another name for this sort of attack is Flash Attacks [15]).

In CPS, in order to replace the need for user intervention and regulate power more reasonably, load balancing
algorithms are used instead. Load-balancing algorithms distribute resources based on expected energy usage
to optimise the consumption, focusing on delivering energy more efficiently. However, if massive unexpected
spikes are triggered as a consequence of a botnet, it can cause waste of resources and even a scarcity of power
for essential functions and real users.

Load-Changing attacks are not only pertinent to power-grids, it is becoming more common for smart
infrastructures, such as smart buildings and smart cities. The core idea is to have self regulating power
supplies that adjust energy levels due to expected consumption and loads. What this means is that a targeted
attack could be aimed at a specific company or location to turn off power and overpower the load management
system. What is made evident by these examples [10,31], is that this threat is no longer a far-fetched scenario,
but rather, a very real likelihood.

As a response to such challenges in power related research we have created a stochastic model that can
be used by smart infrastructure managers to evaluate the threat on this system and devise countermeasures
to tackle disruptions. Our proposed modelling approach observes the impact on security of different control
mechanisms of a CPS grid under a botnet attack. In particular, we show the likelihood of the success under
different setups: a detailed analysis is presented in Section 5.

2.1 Related work

DoS attacks have long been one of the most common and dangerous threats in many computer networks. Their
detection [9] is therefore the first step required to perform an effective response. These attacks become even
more dangerous as the IoT spreads across a vast amount of spectra and parts of life. The literature on security
concerns highlights similar scenarios of DoS attacks against IoT systems and CPS [3,18,28,8] With the ever
changing Internet landscape, attackers have started to focus on specific vulnerabilities of systems to optimise
their attacks. Liang et al. [18], showed a simple Distributed DoS attack on an IoT scenario, however, they
have demonstrated that the result of an attack, if propagated to a CPS, could be massively impactful. In their
work, Roman et al., 2013 [28] mention key features of how the way these type of systems are setup can cause
security concerns. The unique characteristics present in smart infrastructures may render it vulnerable to new
avenues of attack such as battery drain and new types of DoS. These new challenges raise concerns for security
professionals such as what security vulnerabilities their specific system could be subject to, and what impact

6 T. Birdsong and G. Davis. Updated blackenergy trojan grows more powerful, McAfee Labs, Mar 2018, Available Online at:
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/updated-blackenergy-trojan-grows-more-powerful/
7 K. Zetter. Inside the cunning, unprecedented hack of Ukraine’s power grid. Wired, Jun 2017, Available Online At:
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
8 BBC News. US and Russia clash over power grid ’hack attacks’. BBC News, Jun 2019, Available Online At:
https://www.bbc.co.uk/news/technology-48675203
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it might have.
Load changing attacks were mentioned in Dabrowski et al., 2017 [10]. In their work the authors have

discussed a simulation concerning the impact that load changing has on power management. Their attack is
based on the fact that when operating a power grid, providers have to continuously maintain a balance between
supply (i.e., production in power plants) and demand (i.e., power consumption) to maintain the power grids
nominal frequency of 50/60 Hz. Their Matlab simulations show that this balance can easily be broken through
a botnet attack. Through their power analysis, they also estimate the number of devices needed to disrupt
a country’s power grid. This work is one of the first to show that a potential attack can be staged against a
power plant without the need for manipulating the controls itself, but just by external device activity. Our
proposed approach takes inspiration from this external influences, but scales it to the representation of any
power grid. Also, rather than using simulation, our model uses model checking features present in Markovian
solvers (PRISM tool) to evaluate the impact these attackers have on the modelled system.

Another work which studied coordinated attacks by botnets and disruptions to the power grid was done by
Soltan et al., 2018 [31]. Their work introduces the concept of Manipulation on Demand via IoT (MADIoT),
through simulations they show how external influences of high power devices can cause disruptions and power
outages. They have demonstrated the interdependence between supply of power and the demand, and how
this can be exploited to cause disruptions. These types of attack are the core focus of our work, however,
Soltan and his colleagues focused on simulations of attacks. In contrast, it is our wish to quantify what these
attacks mean from the perspective of a potential supplier. Through model checking we could investigate how
the attacks affect the power system, and we can adapt it to better adjust, prepare, or respond to these attacks.

Continuous Time Markov Chains (CTMC) models have been successfully used to simulate attacks on a
variety of systems [2]. Baumann et al., 2012 [5], make use of CTMCs to model Flooding DoS on a theoretical
network. Through their models they were able to show the impact of the attacks on the systems throughput
and evaluate its effects. They could also perform security checking for different DoS rates and scenarios. In
Arnaboldi & Morisset, 2017 [2], this notion is taken a step forward to model a CTMC capturing DoS attacks
on IoT Systems. The model presented were able to quantify several impacts of the DoS attacks including how
they influenced other components in the system as well as suggesting optimal system setups. Both these works
demonstrate the flexibility of CTMCs for modelling attacks on systems of devices. Our proposed modelling
methodology uses a similar approach to modelling systems of devices and observes the impacts of the attacks,
but rather than focusing on general flooding of messages looks at the specific problem of load balancing and
power management. Previous work in this area by Norman et al. 2005 [22] used PRISM to observe runtime
strategies in order to achieve a trade-off between the performance and power consumption of a system. Our
approach extends this to look at the influence of an attacker on these balancing strategies

Specific to the context of coordinated cyber-attacks on smart grids, Moya & Wang, 2018 [20] have devel-
oped correlation indices suitable for identification of these disruptions. Sun et al., 2016 [34] have proposed a
Coordinated Cyber Attack Detection System (CCADS), strongly inspired in IDS concepts as well as its benefits
to cyber security efforts to mitigate the effects of such disturbances in smart grids.

2.2 Threat Model

We are working on the assumption that our designed adversary has gained illicit access to a large number
of IoT devices and formed a botnet. Using this botnet, our envisioned attacker targets a smart grid infras-
tructure through excess energy usages and causes a spike which damages the load controller. When a power
plant experiences very high load, it will employ one out of three mitigation controls, primary, secondary or
tertiary [10,31].

(i) Primary Control distributes the load to other power-plants in the vicinity.

(ii) Secondary Control makes an assessment to return to normal operation if criteria is met.

(iii) Tertiary Control frees up resources from previous Primary and Secondary controls.

The most damaging target is Primary Control, as switching on and turning off further plants is expensive and
time intensive. The objective of the attack is to continuously trigger the Primary control and consequently
cause the most damage, including potential damage to turbines and machinery caused by the strain.

Further to this consideration, power suppliers are constantly balancing the frequency of the supply. Sudden
spikes may affect the frequency significantly enough to activate security mechanisms of power plants for which
they detach themselves from the grid. This may lead to blackouts and disruptions. A smart intruder who has
gained access to a botnet can choose when to turn them all on synchronously. If she controls enough devices,
she may induce a spike and make suppliers detach. In order to inflict the highest damage, the attacker needs
to make sure that she will cause a spike; however depending on current usage, this may or may not happen. If
the attacker controls a fraction of the devices and turns them all on, but these devices are already operational
due to expected daily usage, the spike may not trigger. Perhaps counter-intuitively, depending on the daily
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usage, it might be a lot more damaging to trigger the spike at a lower usage time such as mid afternoon to
cause the most disruption.

The effectiveness of a spike will also depend on the type of supplier providing the energy. Whilst if a nuclear
supplier is spiked it might take a very long time to recover, gas power plant have a much higher adjustment
rate and are therefore more resilient to these attacks. In our model we mimic the response behaviours of hydro,
gas and nuclear power. We model the demand borrowing real values 9 in the UK, which we scale down to limit
the number of power suppliers in the model. The attacker is modelled at every hour of the day (with the mean
power usage at that time), and we calculate the success and impact rate of the attacks.

3 Model

Markov Chains (MC) are a powerful modelling formalism to describe behavioural properties of systems with
simple primitives [23] proposed in the early 20th century by the mathematician Andrey Markov. However, they
do not appear in the context of time shared systems if not by mid 1960 for scalability purposes [29,32]. The idea
behind MC is to abstract a system using only states, transitions and rates or probabilities to model behaviour.
Solutions of Markovian based systems usually employ direct or iterative solvers, yielding state permanence
probabilities. It is possible to model situations where randomness representation is important; this has been
successfully applied throughout the years in different domains such as economy, music composition, information
retrieval and ecology.

Despite their strength, a known problem affecting MC based approaches concerns how easy one could end
with an intractable model having millions of states. This problem is known as state space explosion, where even
small systems (for example, systems having a couple of limited capacity queues) may show an unmanageable
number of states. One way to mitigate state explosion is to resort to structured alternatives that still work
with an underlying MC, profiting from its modelling strength and operating with larger models. Examples of
formalism employing reduction strategies are Queueing Networks (QN) [33], Stochastic Petri Nets (SPN) [19]
as well as more modular ones such as Performance Evaluation Process Algebra (PEPA) [14], Superposed
Generalized Stochastic Petri Nets (SGSPN) [12], and Stochastic Automata Networks (SAN) [26], to name a
few examples. It is worth mentioning that some approaches share many constructs among each other such as
the concept of modules, e.g., processes in PEPA or automata in SAN (in a very abstract perspective).

The present work aims to model a CPS based environment under attack employing reactive modules [1], a
modelling approach used in the PRISM tool [16]. The software is a Probabilistic Model Checker used in verifi-
cation, where modellers are able to choose from different types of probabilistic models such as Continuous Time
Markov Chains (CTMC), Discrete Time Markov Chains (DTMC), Probabilistic Automata (PA), Probabilistic
Timed Automata (PTA), and Markov Decision Processes (MDP) with extensions to models with costs and
rewards. A graphical user interface guides the modeller when building and analysing models, with interesting
features such as path analysis, system properties, computation of steady and transient state probabilities, and
a simulator used for model debugging. It also allows for the definition of symbolic variables combined with
experiments that operate under intervals and steps, easing analysis. Internally, it employs solution methods
such as Power, Jacobi, Gauss-Seidel methods (among others) for CTMCs and DTMCs. For more information
we refer to PRISM’s website 10 . For the set of modelling possibilities stated earlier, PRISM allows for straight-
forward model decomposition into so called modules, where users employ primitives such as global variables,
state transitions with associated rates, formulas assigned to states (e.g. functions that observe local states in
other modules or other desired behaviour), among others.

3.1 Continuous Time Markov Chains

A CTMC is a stochastic process having the Markov property [23], also known as memoryless property, that is
usually defined as:

P [X(tk) = sk | X(tk−1) = sk−1, . . . , X(t0) = s0] = P [X(tk) = sk | X(tk−1) = sk−1],

where { X(t) | t ∈ R>0 } are random variables, X(t) are observations at time t (e.g. X(t) corresponds to the
system at time t). The memoryless property addresses the notion that in a given state, the decision of visiting
a next state must not take into account the set of prior visited states, e.g, the past up to this point is irrelevant.
A CTMC shows similarities with a Labelled Transition System (LTS), but it is different as its transitions are
decorated with exponentially distributed (memoryless) delays or rates instead of labels. Another difference is
that in LTS (also known as Kripke structure or Finite Automata) the labels on transitions allow the modelling

9 The demand across the UK of the 27 September 2019.
10PRISM: Probabilistic Symbolic Model Checker, online at https://www.prismmodelchecker.org
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of non-determinism, being a powerful formalism used in formal verification due to its high scalability and
applicability [13].

A CTMC assumes enumerable states where time evolves continuously according to the chosen values for
the set of rates [16]. Formally, a CTMC consists of a tuple (S, s0, R, L) where

• S is the state space of the problem, i.e., the finite set of states modelled by the user,

• s0 ∈ S is the initial state,

• R : S × S → R>0 configures the transition rate matrix of the model, and

• L : S → 2P are label mapping states to atomic propositions in P .

If multiple states have ongoing transitions with different rates, i.e. R(s, s′) > 0, then a race condition occurs,
where the transition with the least value (according to the exponential distribution of the rate) is triggered
first. The time spent in a state is drawn from the exponential distribution given by E(s) =

∑
s′ R(s, s′), where

E(s) is the exit rate of the state s and the probability of leaving a state s within [0, t] equals to 1− e−E(s)t.
A CTMC encloses a discrete time counterpart termed the Embedded DTMC, computed using the transition

rate matrix elements and E(s), i.e. dividing each cell element by E(s). The so called infinitesimal generator
Q of a CTMC is a matrix S ×S whose non-diagonal entries are the same as in R, and the diagonal entries are
defined in such a way that the sum of each row of Q equals 0.

Q(s, s′) =


R(s, s′) s 6= s′

−
∑
s 6=s′

R(s, s′) otherwise .

This concerns the representation of CTMCs and its operational meaning. In terms of solution, it corresponds
to multiplying an initial probability vector (it could start with equiprobable values) π by Q until the balance
is reached, i.e., πQ = 0. If the system has reached convergence, it presents the steady state of the model,
otherwise, it diverged, and other techniques such as transient analysis should be employed instead. The steady
state yields the permanence probabilities for each state, representing the system’s behaviour after a long run,
i.e., its stationary behaviour.

As stated earlier, PRISM is inspired by the formalism of reactive modules as the decomposition approach
to modelling. It consists on devising smaller CTMCs for each module and then define transition functions
using formulas, as well as synchronisation among modules. For solution, it combines the local state spaces
for all modules (e.g. Cartesian product). PRISM is equipped with several numerical methods (Power, Jacobi,
Gauss-Seidel, and many others), simulation or, depending on the tractability of the model (due to state space
explosion), through model verification of properties or probabilistic model checking.

3.2 Problem formalisation

We demonstrate our main idea through the definition of a small order CTMC that will guide our process when
we extend it to the set of power plants, load controller and botnets. We are working here with a very reduced
state space, explaining our initial state, some possible transitions and what we actually mean by an attack.

In a simplistic view of our model, we have a single power generator (PG) that can be in three states SPG: (i)
available (a), ready to supply but not yet generating energy to the grid, (ii) generating (g), currently providing
energy to the grid, or (iii) restart (r), detached from the grid, not generating, nor supplying, and in the need of
a restart. The states in SD model the demand D loading the grid at the average expected level m (for medium)
plus or minus small deltas, modelled by two additional states l (for low) and h (for high). The attacker B
is a botnet controlling a large amount of infected devices. Its states in SB are modelled as simply 0, when
the infected controlled devices are all off, or 1 when those devices are switched on. In summary we have the
following states

SPG = {a, g, d}
SD = {l,m, h}
SB = {0, 1}

Following the notation introduced in Sec. 3.1, the CTMC relating to this simplistic model is defined as a
tuple (S, S0, R,L) where S = SPG × SD × SB , and s0 = (a,m, 0). The rate matrix R is a square matrix of
dimension |S| whose entries are zeros apart from those corresponding to the transitions we modelled. So for
example, given two states si and sj , then the transition rate rij is the mean per time unit that we expect the
transition from si to sj to happen. The labels in L associate valid proposition to states: we associate them
to desirable properties. In particular, we label all states where the current demand in the system is above
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Fig. 1. The controller and the attacker role in our problem formalisation fine grained to the transitions of a PG (a) and coarse
grained to the whole system with multiple PGs (b). We remark that the attack is not directly done to the power generator
transition from generating to off, but the attack indirectly causes it through spike over-demand.

the current supply as “overDemand”, for example (d,m, 1), where if the PG is detached it cannot match the
demand m. As the reader may notice, the controller of the power generator does not appear among the states.
This is not because there is a single PG, but by modelling choice that needs to refer to a more complex system
with multiple PGs to be illustrated.

The basis for our model is presented in Fig.1. It is our intention to model a botnet (B) influencing the
setting of power generators to let them go off, or detached. In the normal operative state of the system, PG is
available, then generating, or disconnected. The demand operates at the medium value m, for some time going
to low demand or high demand. A controller dictates the response of the grid in case there is an excess of
demand. It is a deterministic transition attempting to create an equilibrium in the grid. In a system without an
attacker, two different controllers may behave in the same exact manner, however under an attack the control
strategy determines how effectively the load is re-balanced. We define the optimum controller strategy as that
one which minimises the time where a system is in a state of over supply or over demand. What dictates the
effectiveness of the controller is the responsiveness of the PGs, i.e the controller decides that a PG needs to
be turned on to meet the demand, if the PG is a very slow one, this will lead to large amounts of time offline.
By modelling different controller strategies, one can easily envision that an optimal controller can be selected
against a specific attack and under a specific load. The less trivial research question is whether an optimal
strategy can be found to optimise the power supply for a specific grid or CPS. We investigate this problem
by modelling the power supply in Sec. 3, and look at the way three different controller strategies impact the
effectiveness of a spike Botnet attack. We could potentially have a set of PG to work with (Nuclear, Gas,
Electricity, Wind, and so on) where the Spike Botnet engages in an attack-defence game to roughly estimate
the state of the controller to direct decisions on when to switch devices on or off.

3.3 Energy Supply Demand Trade-off Model

Our work focuses on modelling the balance of energy supply and demand. To do so we have created three
entities: i) suppliers, power generators mimicking different types of plants typically attached to the grid, ii)
consumers, modelled as average values of energy demand per hour, they also are subject to positive and
negative variations across time, and iii) spike botnets, a large quantity of compromised IoT devices, they might
be thought as high wattage devices such as water heaters or air conditioners that can be synchronously turned
on or off, they produce sudden spikes or drops of energy that unbalance the grid and trigger the automatic
security disconnection mechanism of the PGs from the grid. One way to mitigate disturbances is to employ
load shedding or tie-line tripping, techniques employed to disregard incoming requests in order to maintain
integrity and avoid breakages [11].

The way the demand supply trade-off is modelled is as following: the consumers will have a certain energy
requirement and the suppliers will need to be turned on to meet the demand. However if the Botnet is successful
in taking down a PG, there will be a temporary situation of under supply. To meet the demand, more PGs
need to supply energy. Their responsiveness is subject to several limitations. First, a PG requires some time
to be fully functional, especially if it gets suddenly detached from the grid; some are quite fast, while others
are expected to be much slower, like nuclear power plants. Second, the amount of PGs is finite; if the botnet
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takes down enough PGs whilst they are unable to reattach themselves to the grid, there will be no way for the
suppliers to meet the demand. Third, independently of how many PGs are taken down, at peak demand, the
power grid might have very few spare resources, so if one PG is taken down at 18:00 during dinner time the
impact might be a blackout for the whole grid.

We show this balance in a toy example with two scenarios, Scenario A and Scenario B in Fig. 2, whose
behaviour is as expected. In this case study we show the impact of two different factors, responsiveness to the
demand and magnitude of the demand, each placed in a low demand scenario and a high demand scenario.
Both scenarios are initially capable of meeting the demand, as there are plenty of available PGs; however, they
react differently to the load caused by botnets’ attack.

Table 1
How the PG’s interact with the attacker in Scenario A-(1/2). The States are: A - Available, S - Serving, and D - Disconnected.
Sup, is the supply of a single PG out of four and Att is whether the Spike Botnet is on or not. The Demand is fixed at 120 units.

The values represent the rate at which a state transitions from a state to another (if 0 the transition doesn’t exist).

PG Slow
Transitions

Sup Att PG Fast
Transitions

Sup Att
A S D A S D

A – 0.50 0 0 Off A – 1200 0 0 Off

S 0.50 – 0 50 Off S 1200 – 0 50 Off

D 0.25 0 – 0 Off D 600 0 – 0 Off

A – 0.50 1200 0 On A – 1200 120000 0 On

S 0.50 – 1200 50 On S 1200 – 120000 50 On

D 0.25 0 – 0 On D 600 0 – 0 On

In Scenario A, we model two systems A-1 and A-2 under a high load. A-1 has very responsive PGs (such
as gas plants), and A-2 has less responsive PGs. We showcase that in the system with faster response rate the
time in which the system is in over demand is much lower. On the other hand, due to slow startup times, in
the second system the time in over demand will be much higher.

In Scenario B, we model two more systems, B-1 and B-2, each of the systems shows the same number of
PGs, but while the demand of B-1 is high, the demand of B-2 is low. We show that when the system is in
a high demand period, an attacker is much more likely to disrupt the powergrid than if under a low demand
period. The scenario matches the values for Scenario A-1, but the demand is altered between B-1 and B-2
from 50 to 100. This case highlights the different situations that can take place if a Spike botnet were to target
the power grid, in our in depth experiments mimicking the power usage of real world scenario we take this a
step further and examine it on various different types of PG such as gas and solar plants.

3.4 Power–Energy considerations

In energy terminology, Unit Commitment (UC) [24] tries to find the least-cost dispatch of available generation
resources to meet electrical loads. In the past, different strategies were conceived to deal with UC related
issues such as simulated annealing [30], dynamic programming optimisation [25], particle swarm [35], genetic
algorithms [36,21] or combination of those and other techniques. UC is a relevant problem in energy as the
demand/supply requirements are usually uncertain.

We are interested in working here with UC in an abstract way, representing supply and demand for CPS
or smart grids. There are several generating resources available for use by energy managers such as nuclear,
thermal (using fossil fuels such as coal, natural gas or oil), or other biomass. When deciding which power plant
to turn on, several decision variables come into play such as generation level (in Megawatts, MW) and number
of generating units that must be turned on. A power plant employs different technologies to generate energy, for
instance, nuclear based have to be turned on and then cooled down, tasks that usually take considerable time.
Other sources such as solar panels on the other hand have different maintenance peculiarities than those of, for
example, wind turbines. Lastly, when broken, each system would involve different resources and equipment,
which translates to greater time not producing energy which impacts the grid in its entirety.

Another source of concern is directed towards hourly fluctuations (used interchangeably here as either surges
or peaks) that may be present in a day. These differences in demand-supply, if greater or lower than specific
thresholds (defined by energy operators) may cause severe damage to the grid and or its turbines (if used),
even sometimes causing permanent damages which impact projected energy yield. Our model captures the so
called sudden surges to the energy grid, where infected high-wattage appliances synchronise their operations
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Fig. 2. Powergrid reaction to botnet spikes in our case study scenarios

to trigger disruptions. Fig. 3 shows the daily energy usage for the United Kingdom scaled down to roughly its
1% (e.g. Glasgow’s population) with noticeable peaks in demand according to specific times of a given day 11 .
We remark that we scaled down the data to allow for smaller state space in the model.

on 27 September 2019
scaled down to roughly 1% to simplify the model

Fig. 3. Usage data for the UK, scaled down to about 1%, in MW, across 24 hours on Friday 27 September 2019 – data obtained
from Balancing Mechanism Reporting Service (BMRS) [6]

Fig. 3 highlights an expected usage trend, with more power demand at times such as breakfast and dinner
and a sharp decrease when (the most) people are asleep. These are known trends and therefore power supplies
are build to cater to them. It is noticeable that the load is distributed in a way that if there is a reasonably
expected raise in consumption at any point along the line the load controller will be able to handle it. This
tolerance value is what the attacker has to outmatch in order to cause the disruption, perhaps unexpectedly,
this means unexpected above normal usage is much more damaging than just mass usage. Through our model

11Original data is available online from the balancing mechanism reporting service in the UK [6].
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we highlight this by showing that the most impactful attack times (varying with the different power plants),
may not be the ones of most usage.

In our setting we are dealing with a load-balancing system that tries to maintain the equilibrium to keep the
frequency to 50 MHz; this is done balancing the demand (produced by users turning on their devices whichever
they are) and the supply (the set of power generators required to meet the demand). We are combining this
balance with a control strategy, where we mimic the manager’s decisions as to which power generator should
be prompted at specific times to cope with demand. These decisions address the fact that under surges or
spikes it could be possible to increase the security level if the right measure is taken at the right time, working
as a protection against those sorts of disruptions. There are many ways to find reasonable forms of mixing
which power to be switched on or off at any moment, and a common strategy is to use greedy algorithms for
selection. At the core of these algorithms it resides the fact that a prompt reaction should be deployed as soon
as possible, so the next available power plant should be turned on adding power to the infrastructure so it can
handle the demand accordingly.

4 Cyber security model applied to CPS

In previous sections we discussed the problem from a general perspective. For our experiment we focused on
a scenario involving somehow realistic implementations of power generators and we adopt the real demand
on a specific day in the UK. For the model discussed here, we are interested in using CTMCs due to the
required dynamics for our cyber-security problem. Our modules are illustrated in Fig. 4: they consist of power
generators PG (nuclear N, hydro H, and gas G), the demand D, modelling the supported threshold to try to
withstand disruption case demand ≈ supply, a controller C, greedily selecting which power generator to use
prioritising next according to design decisions, and finally the set of IoT devices I (the Spike Botnet in the
figure), symbolising infected high-wattage components under the control of adversaries. These choices were
made to highlight a variety of setups mimicking a modern smart grid.

We are considering that each PG has its distinctive design possibilities, usually dealing with high loads
of energy in different ways. For our specific case study we are interested in how the different prioritisation
of PGs could potentially affect the availability to cope with attacks. In Fig. 4, we adopt a tailored notation
to represent our modelling choices, for instance, initial states are marked with a small dot whereas rates are
shown as textual descriptions decorating some transitions (e.g. slow, fast and so on).

Co
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lle

r

priority

nuclear

hydro

gas

off

generating

availableavailable

Power Generator
capacity: 20 MW (hydro-like)

fast re
start

Demand

average
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high

on

off

Spike
Botnet

off

generating

availableavailable

Power Generator
capacity: 40 MW (nuclear-like)

slo
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very slow restart

off

generating

availableavailable

Power Generator
capacity: 10 MW (gas-like)

fas
t

slow restart

Fig. 4. Model and PRISM modules, representing Nuclear, Hydro and Gas power; the demand, along with and variations from the
expected value; and our designed attacker controlling a percentage of the systems devices.

All PGs start in available state when ready to supply, in the generating state when supplying to the
grid, or in off state when offline. We have added a module Controller to cope with the supported variation,
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parameterised to withstand increments or decrements of ±1%W . Finally, the infected devices (botnets) are
either on or off, modelling either an attack in place or inactive, respectively. In our model, the Botnets are
composed by unique devices that are only controlled by the Botnet and do not represent daily usage. The state
delays (they will be converted to rates due to our CTMC representation) for the model are shown in Table 3.

Table 2
Parameters for the model in PRISM and total of instances for every PG.

PRISM Module Observation # of instances

Nuclear (N)

Generates

40MW each 4

Hydro (H) 20MW each 5

Gas (G) 10MW each 6

Controller (C) ±1% tolerated deviation from normal –

IoT Devices (I) up to 30% expected wattage –

Total: 320MW

We changed the PGs characteristics through fixed parameters that map their behaviour. We assume that
the power generators’ capacity does not depend on the hour of the day, even if it may not be the case, i.e.
in night hours we obviously expect solar generator to have reduced supply capacity. This can anyways be
modelled, as we run experiments by per hour, and this time can be reduced to be more fine grained. The
Table 2 shows the parameters we used, where the number of module instances mimic the specific scenario of
matching the power supply for a location populated roughly as much as Glasgow is. We do not realistically refer
to Glasgow’s power plan scenarios, only to the expected demand of roughly its population. The supply will
always cater to the daily demand, however the IoT devices may still cause spikes to offset the load management
and break PGs. It is reasonable to consider that attackers may select regions where the difference between
supply and demand are close. In low consumption regions (in Fig. 3 they correspond to early morning) or
high (start of the day at 8:00 and then at 20:00), the power plants are taking decisions as whether to increase
or reduce the power supply to meet the demand. Our modelling approach focus on closely inspecting those
time spans, aiming to evaluate which power plant configuration would be best suited to be adopted in case the
infrastructure was to be targeted for attacks.
We are considering the following scenarios for our analysis:

(i) NO-ATTACK: normal grid operation. It is expected to be in over supply state most of the time;

(ii) ATTACK: in this scenario we are modelling the coordinated effort to disrupt the grid. The attackers
could profit from the peak hour knowledge to direct their efforts. We are varying Controller to prioritise
which PG would be triggered first to investigate the possible mitigation strategies as follows:
(a) ATTACK-N: Controller prioritises first on Nuclear, then Hydro, then Gas.
(b) ATTACK-H: Priority on Hydro, then Nuclear, finally Gas.
(c) ATTACK-G: For this one, first turn on Gas, then Nuclear, finally Hydro.

For our four experiments we have instantiated a total of 17 modules, addressing in terms of PG a total
of 320 MW. This power corresponds to a grid that could be deployed in a region to serve the power needs of
the whole of Glasgow (population ≈ 598, 830 people). The reachable state space of our NO-ATTACK model
is around ≈ 300.000 whereas in the ATTACK-* models, it sums to 57 million (with the modified Controller
policy and attack botnets). We computed the model properties related to the probabilities of the system being
over supply, in equilibrium and over demand. In terms of rates, we are considering the values of Table 3.

5 Results

Among the several interesting analysis that could potentially be performed using our model, we direct the
focus to the probability for the over demand when a spike is successful. In such a case, we consider an
attack successful if the spike makes a PG go offline, after having caused an excess in demand. The controller
prioritises the order of activation of PGs (we assume all are under its control). If all preferred controllers are
on, an alternative type will be activated.

Our results show key times in which the demand may exceed the current supply, attackers may use those
ranges as clear opportunities for disruptions. We have four main scenarios (NO-ATTACK, ATTACK-N,
ATTACK-H and ATTACK-G) as described in the previous section, each one comprising one hour of a day, to-
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Table 3
Parameters of individual modules used in the model (time scales in minutes (m) or seconds (s).

Module
State

Time
From To

Nuclear

Available Serving 30s

Serving Available 40m

Serving Offline <1s

Gas

Available Serving <1s

Serving Available 30s

Serving Offline <1s

Hydro

Available Serving <1s

Serving Available <1s

Serving Offline <1s

Offline Available 20m

Demand

Normal Negative 5m

Negative Normal 1m

Normal Positive 5m

Positive Normal 1m

IoT Devices Off On 1m

Spike Botnet On Off 1m

talling 4×24 = 96 PRISM models 12 . The attack scenarios resulted in a state space of an average of 57, 264, 556
million states, so the experiments were run in parallel on a multi-core server with 16 processing units. The
model parameters were tuned to represent the daily energy usage of an area populated roughly as much as
1% of the UK (like a big city such as Glasgow in Scotland), with mean usage and expected variations at each
hour of the day. In our first experiment, we produced the baseline usage to find the likelihoods of exceeding
the demand (compare with results in Fig. 5), this allowed us to evaluate the expected behaviour of the system
without a spike botnet.

The next three experiments each modelled a different power prioritisation to meet the demand, this allowed
us to investigate which power generator type performs best under the threat of a spike botnet, interestingly
there are quite a few differences as highlighted by Fig. 6.

Fig. 5 shows our demand probabilities for a day. It is noticeable the close relation of the demand with the
daily power consumption of Fig. 3. The difference is that, with this graph, stakeholders may also inspect the
probability that the demand will exceed and then anticipate load-changing opportunities of attacks. The lowest
probabilities are during early morning (before 6:00) and after 10pm. During the day, there is a considerable
probability (around 40%) of finding the system under high load whereas the chances increase to approximately
60% by 5:00 to 19:30, slowing down from then until 23:00.

Fig. 6 shows the results from our attack models. As expected, peak hours are more susceptible for spike
attacks; however, it is possible to infer the probability of the system where it is in over demand, information
that may be used to have auxiliary power generators readily available to avoid energy interruption in the
event of attacks. The different controllers actually performed significantly differently with respect to security.
Prioritising Hydro led to the scenario where an attack is the least likely to succeed across the day. Nuclear, on
the other hand, performs rather poorly, this is due to it’s slow transitions from serving to available and due
to it’s inability to recover after a spike attack (within 1 hour). Finally, prioritising gas shows more areas of
attacks than hydro. It also reaches a slightly lower height at peak time of 18:00 (peak time of success for all
attack scenarios), rendering it better over hydro power for that particular time period.

We stress that the numbers we used to model the PGs are partially reflecting the reality, as we borrowed

12We have used PRISM version 4.5.
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Fig. 5. Probabilities for demand raising above tolerated values, in a day to day scenario with our PG setup.

them from what specifications we could find, but they may not be as realistic as wanted by experts in real specific
domains. Building on our example, one could always re-run the experiments with different characteristics and
settings, to better reflect their scenarios of interest. It would then be possible to compute the probability of
being under high or low demand given these new parameters and devise reasonable countermeasures to avoid
peak attacks. These peaks are not necessarily cause by malicious attackers, but may happen due to other
benign causes. In Brazil in 2007, for example, hackers were promptly blamed as the cause of a major blackout,
but further investigation concluded that some faulty equipment triggered a cascading failure from a poorly
maintained systems 13 .

Likelihood of successful a�ack

Fig. 6. Likelihood of blackouts caused by spike botnets and different control strategies.

6 Conclusion & Future Work

The pervasive nature of CPS in real world applications mandates system designers to address security concerns
more deeply. Security related problems directly impact critical infrastructures, requiring the installation of
additional software patches, inevitably causing monetary losses to stakeholders. Power reliant stations are
concerned with the responsible provision of energy to customers, since disruptions may impact costs and more

13Official document: http://www.aneel.gov.br/cedoc/adsp2009278_1.pdf

13
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serious outcomes (human lives). We stress the fact that properties such as integrity, availability, reliability,
dependability [4], plus performance, safety and security are crucial quality properties to deliver adequate service
levels and enhance trust to users.

The problem addressed in this work tackled Unit Commitment and presented models to enhance power
plant responses to active attacks targeting the energy infrastructure. We have built a CTMC mapping to a
power grid mixed with a network of CPS for a set of scenarios. We have considered situations for normal
operation (assuming no attacks) in conjunction with scenarios where attackers acting in coordination could
take advantage of infected CPS to cause electric peaks or surges, which in turn would increase or decrease power
consumption in relatively short time periods. We have also presented scenarios where power managers could
enact mitigation policies, e.g. choosing other power sources or disconnecting parts of the grid to meet demand.
The model described here could also be applied in another mechanism where managers could differentiate
localised abnormal usage from directed attacks and take measures to avoid grid disruptions more effectively.

Our results show the numerical impact of addressing mitigation strategies to avoid peaks using CTMCs to
capture intricate power related behaviours. We show how different power generators produce different results
under attack and also that a intelligent controller could be designed to alter the priority of power generation
and somewhat mitigate these kinds of attacks.

As next work, we are envisioning to extend the model to address more attackers with different patterns of
behaviours as well as adding costs and rewards to states deemed important for later analysis. We could also
add extra states to model the activation of other external power sources such as secondary or even tertiary
mechanisms and their relation to attacks. The model could also be scaled in terms of different CPS types and
wattage needs, where we could evaluate the impact on new security measures to avoid powering up new plants
or blacking out major grid portions in response.

It is also our intention to work with simulation models mapping and addressing some of the concerns
provided here, where we could enrich it with more fine tuned behaviours to capture other characteristics of power
plants as well as other adversary profiles. It is also worth mentioning that in the work concerning GridShock [10],
the authors suggest other power plants start up mechanisms in the event of sudden disconnections, e.g. black
restart, where portions of the grid are turned on each time. We could analyse these procedures in combination
with the notion that cyber attackers may profit from such slow restarts to disrupt the grid and stop energy to
be distributed over the grid.

Finally, our model could be instantiated with other power sources (e.g. wind mills or attaching electric
vehicles), where we could investigate other relationships between power plant configuration mixing and cyber-
security attacks altogether. In retrospect, our approach has the potential to suggest means to improve their
operations as well as reasonable design approaches towards more reliable uses of energy sources as well as
mitigation strategies to improve overall operational requirements.
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